ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
S. J. Piet, M. S. Kazimi, L. M. Lidsky
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 533-538
Environment and Safety | doi.org/10.13182/FST83-A22918
Articles are hosted by Taylor and Francis Online.
The FUSECRAC code, a modification of the CRAC code, was developed to estimate public health effects from released fusion radioactivity both for safety studies and for comparison of the hazards associated with candidate structural materials. This paper summarizes the key motivations, problems, and results of the FUSECRAC comparison. The evolving CRAC code is a product of the Reactor Safety Study and represents the state of the art in fission accident consequence assessments. It was found that potential public health effects from accidental releases of 316 SS are two orders of magnitude higher than from V-15Cr-5Ti or TZM per unit volume of activated first wall released. The probabilities for releases among these materials were not addressed here.