Transport simulation and modeling studies for the ELMO Bumpy Torus (EBT) reactor are carried out by using 0-D and 1-1/2-D transport calculations. The time-dependent 0-D model is used for global analysis whereas the 1-1/2-D radial transport code is used for accurate determination of density, temperature, and ambipolar potential profiles and of the role of these profiles in reactor plasma performance. Analysis with the 1-1/2-D transport code shows that profile effects near the outer edge of the hot electron ring lead to enhanced confinement by at least a factor of 2–5 beyond the simple scaling that is obtained from the global analysis. The radial profiles of core plasma density and temperatures (or core pressure) obtained from 1-1/2-D transport calculations are found to be similar to those theoretically required for stability.