ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
D. R. Hanchar, M. S. Kazimi
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 395-400
Tritium | doi.org/10.13182/FST83-A22896
Articles are hosted by Taylor and Francis Online.
A transient tritium permeation model is developed based on a simplified conceptual DT-fueled fusion reactor design. The major design features in the model are a solid breeder blanket, a low pressure purge gas in the blanket and a high pressure helium primary coolant. Tritium inventory in the breeder is due to diffusive hold-up and solubility effects. Diffusive hold-up is assumed to be the dominant factor in order to separate the solution for the breeder tritium concentration. The model was applied to the STARFIRE-Interim Reference Design, whose system parameters yielded a breeder tritium inventory on the order of grams. The breeder pellets (average radius, 10−3 cm) reach their steady-state tritium content in approximately 4 hours from startup, assuming continuous full power operation. Both the steady-state breeder tritium concentration and the time to reach that steady-state are proportional to the square of the pellet radius.