ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G. W. Shuy, D. Dobrott
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 252-257
Alternate Fuels | doi.org/10.13182/FST83-A22877
Articles are hosted by Taylor and Francis Online.
A conceptual tandem-mirror reactor (TMR) configuration consists of a solenoidal central-cell with its ends plugged by a combination of electrostatic and magnetic fields. The magnetic fields in the end plug also provide MHD stability. The electrostatic plugs for ions and electrons are created by combining hot electron plasmas and neutral beams for fueling and pumping. A large negative potential may be formed in the end plug to contain central cell electrons, but the central cell floating potential ϕf is driven negative as charge neutrality is maintained. Cat-d TMR plasma performance is assessed with respect to standard (positive), neutral and negative central cell potential operating modes. It is determined that the plasma. Q for a 2000 MW fusion power reactor is peaked for central cell potential ϕf near zero. This is because on one hand, the ion-loss cone is bigger for positive ϕf and the ion plug electrons must overcome larger ϕf + ϕc and hence more ECH is required to build the ion plug, and, on the other hand, the electron loss-cone is bigger for negative ϕf and synchrotron losses are severe. A zero-dimensional plasma physics model for the density and power balance of a Cat-d TMR has been developed from an existing code that models a d-t TMR operating with a positive central cell potential. The new Cat-d code models all potential operating modes and has been benchmarked.