ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
G. W. Shuy, D. Dobrott
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 252-257
Alternate Fuels | doi.org/10.13182/FST83-A22877
Articles are hosted by Taylor and Francis Online.
A conceptual tandem-mirror reactor (TMR) configuration consists of a solenoidal central-cell with its ends plugged by a combination of electrostatic and magnetic fields. The magnetic fields in the end plug also provide MHD stability. The electrostatic plugs for ions and electrons are created by combining hot electron plasmas and neutral beams for fueling and pumping. A large negative potential may be formed in the end plug to contain central cell electrons, but the central cell floating potential ϕf is driven negative as charge neutrality is maintained. Cat-d TMR plasma performance is assessed with respect to standard (positive), neutral and negative central cell potential operating modes. It is determined that the plasma. Q for a 2000 MW fusion power reactor is peaked for central cell potential ϕf near zero. This is because on one hand, the ion-loss cone is bigger for positive ϕf and the ion plug electrons must overcome larger ϕf + ϕc and hence more ECH is required to build the ion plug, and, on the other hand, the electron loss-cone is bigger for negative ϕf and synchrotron losses are severe. A zero-dimensional plasma physics model for the density and power balance of a Cat-d TMR has been developed from an existing code that models a d-t TMR operating with a positive central cell potential. The new Cat-d code models all potential operating modes and has been benchmarked.