ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Jack Hovingh
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 173-177
Hybrids and Nonelectric Applications | doi.org/10.13182/FST83-A22863
Articles are hosted by Taylor and Francis Online.
Performance of an inertial fusion system for the production of hydrogen is compared to a tandem mirror system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem mirror system if the inertial fusion energy gain ηQ > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem mirror system requires that ηQ > 17. These can be achieved utilizing realistic laser and pellet performances.