ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
J. L. Maienschein, F. Magnotta, I. P. Herman, F. T. Aldridge, P. Hsiao
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 121-126
Tritium | doi.org/10.13182/FST83-A22855
Articles are hosted by Taylor and Francis Online.
Isotope separation by means of infrared-laser multiple-photon dissociation offers an efficient way to recover tritium from contaminated light or heavy water found in fission and fusion reactors. For tritium recovery from heavy water, chemical exchange of tritium into deuterated chloroform is followed by selective laser dissociation of tritiated chloroform and removal of the tritiated photoproduct, TCI. The single-step separation factor is at least 2700 and is probably greater than 5000. Here we present a description of the tritium recovery process, along with recent accomplishments in photochemical studies and engineering analysis of a recovery system.