The characteristics of the neutron-induced radioactivities have been studied for the Tokamak Fusion Test Reactor (TFTR) on both the global and local scales. The global radioactivation properties are illustrated by the dose rate contours near the tokamak for a number of typical cases, based on two-dimensional poloidal model transport calculations. Although calculations on this scale require the omission of many details of the machine design, it nevertheless yields valuable information on the spatial variations of the doses. On the local scale, the activation properties of individual materials have been studied by a systematic analysis which covers a typical set of materials and neutron flux spectra. The data necessary to correlate the operational history, the object size, and the observational distances are presented so that interpolation or extrapolation of the activation properties can be made for the situations that have not been covered. The results yield the necessary correction to the global picture, and also provide the necessary information for the assessment of the problems associated with waste disposal, radioactive material transport, and decommissioning for the TFTR. Although the study is specifically for the TFTR, the methods of approach and the results should also be useful for the analysis of activation on other fusion devices.