ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
New York takes two more steps toward nuclear
In 2025, New York Gov. Kathy Hochul was a vocal supporter of new nuclear development in the state. In October, she called on the New York Power Authority (NYPA)—the state’s public electric utility—to add 1 GW of new nuclear.
At the tail end of December, New York made more nuclear progress on three fronts. Hochul signed an agreement with Ontario Premier Doug Ford to collaborate on new nuclear development, Ontario Power Generation (OPG) signed a memorandum of understanding with the NYPA, and New York finalized its 2025 energy plan.
James R. Powell, J. A. Fillo
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 561-565
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22807
Articles are hosted by Taylor and Francis Online.
High-purity, low-activity powder metallurgy aluminum alloys can be developed for use in a fusion reactor at 300 to 400°C using helium as a heat transfer medium. Hot water as a coolant may limit aluminum to 200°C. From a heat transfer point of view, based on the dual- or two-temperature design approach, commercial fusion reactor blanket designs appear to be feasible. To meet all of the blanket design requirements feasibility requires quantification of thermal hydraulics, materials, neutronics, and material responses. Also, radiation damage and lifetime analyses are key issues for design qualification. Based on tests performed to date, aluminum appears well suited for experimental fusion reactors operating at wall temperatures below 200°C.