ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
James R. Powell, J. A. Fillo
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 561-565
Special Section Contents | Radioactivation of Fusion Structures | doi.org/10.13182/FST83-A22807
Articles are hosted by Taylor and Francis Online.
High-purity, low-activity powder metallurgy aluminum alloys can be developed for use in a fusion reactor at 300 to 400°C using helium as a heat transfer medium. Hot water as a coolant may limit aluminum to 200°C. From a heat transfer point of view, based on the dual- or two-temperature design approach, commercial fusion reactor blanket designs appear to be feasible. To meet all of the blanket design requirements feasibility requires quantification of thermal hydraulics, materials, neutronics, and material responses. Also, radiation damage and lifetime analyses are key issues for design qualification. Based on tests performed to date, aluminum appears well suited for experimental fusion reactors operating at wall temperatures below 200°C.