ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Max Huggenberger, Kenneth R. Schultz
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 456-467
Technical Papers | Blanket Engineering | doi.org/10.13182/FST83-A22795
Articles are hosted by Taylor and Francis Online.
A preliminary design for a helium-cooled solid breeder blanket for a tokamak fusion reactor has been developed, and its performance looks quite good. The design is capable of bearing a 4 MW/m2 neutron wall load, and the ideal pumping power required for the whole primary helium loop including the steam generators is only 2.5% of the total thermal power. The maximum blanket thickness including the helium duct work is only 860 mm, the minimum thickness is only 730 mm. The design work was focused on the thermalhydraulic aspects, which represent the key problems associated with using helium as a coolant. The present work demonstrates that the potential disadvantages helium has, due to its limited heat transfer capabilities, can be avoided or minimized by an appropriate thermal- hydraulic design. As a result, helium with its many advantages remains a promising fusion blanket coolant.