ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Ueda, K. Tatenuma, Y. Nanjou, M. Matsuyama, T. Itoh, K. Watanabe
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1146-1150
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22763
Articles are hosted by Taylor and Francis Online.
To improve the efficiency of gas chromatography for hydrogen isotope separation near room temperature, feasibility of new columns was examined for H-D and H-D-T mixture gases. One kind of the column was the mixture of Pd-Pt alloy and Cu powders as the previous study. But special attention was paid for preparing the separation column; Pd-Pt alloy particles below 200 mesh was mixed with copper powder of 150–200 mesh and packed into a loading tube of stainless steel as uniform as possible. The separation for H-D mixture gases could be remarkably improved by this column even at temperatures around 300 K. This column also could separate tritium as T2 from H-D-T mixture gas containing only 0.13 % T. The other column was prepared by Pd-Pt alloy supported by porous SiC powder for economical use of the expensive alloy. Although this column gave similar separation chromatograms, the separation efficiency was still insufficient and further studies are required.