ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Tadaaki Arita, Toshihiko Yamanishi, Yasunori Iwai, Masataka Nishi, Ichiro Yamamoto
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1116-1120
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22757
Articles are hosted by Taylor and Francis Online.
The separation factors of a cryogenic-wall thermal diffusion column have been measured with H-D and H-T systems. The column was 1.5 m in height and 0.03 m in diameter. Two types of heaters were tested: a tungsten wire 0.5 mm in diameter and a stainless steel sheath heater 11 mm in diameter. The maximum separation factors using the tungsten wire were 49 for an H-D system and 284 for an H-T system under the total reflux mode at 1273 K. At the feed flow rate of 10 cm3/min, the separation factor using the tungsten wire was 55 for the H-T system at 1273 K. The separation factor was decreased as the diameter of the heater was decreased; and the optimum pressure was increased with the diameter of the heater. In the case where the sheath heater (11 mm) was used at 10 cm3/min with the H-T system, the maximum separation factor reached 2660 even at 763 K.