ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J.M. Miller, W.R.C. Graham, S.L. Celovsky, J.R.R. Tremblay, A.E. Everatt
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1077-1081
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22749
Articles are hosted by Taylor and Francis Online.
A 5 Mg/annum Combined Electrolysis Catalytic Exchange (CECE) Facility was designed, constructed and operated to demonstrate the CECE process for heavy water detritiation. In this demonstration facility, a liquid-phase catalytic exchange (LPCE) column, using AECL's wetproofed catalyst, separated tritium from deuterium and a specially designed, low-inventory electrolytic cell provided tritium-enriched deuterium to the LPCE column. An overhead recombiner, also using wetproofed catalyst, produced detritiated heavy water. Tritium was removed from the electrolysis cell as tritiated deuterium gas and packaged as a titanium deuteride. The design detritiation factor of 100 was readily achieved using a 370 GBq/kg heavy water feed. Design features, operational experience and results from the 4-month, 2 000-h operation are described.