ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J.M. Miller, W.R.C. Graham, S.L. Celovsky, J.R.R. Tremblay, A.E. Everatt
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1077-1081
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22749
Articles are hosted by Taylor and Francis Online.
A 5 Mg/annum Combined Electrolysis Catalytic Exchange (CECE) Facility was designed, constructed and operated to demonstrate the CECE process for heavy water detritiation. In this demonstration facility, a liquid-phase catalytic exchange (LPCE) column, using AECL's wetproofed catalyst, separated tritium from deuterium and a specially designed, low-inventory electrolytic cell provided tritium-enriched deuterium to the LPCE column. An overhead recombiner, also using wetproofed catalyst, produced detritiated heavy water. Tritium was removed from the electrolysis cell as tritiated deuterium gas and packaged as a titanium deuteride. The design detritiation factor of 100 was readily achieved using a 370 GBq/kg heavy water feed. Design features, operational experience and results from the 4-month, 2 000-h operation are described.