ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Kenzo Munakata, Akinori Koga, Yoshihiro Yokoyama, Seigo Kanjo, Satoshi Yamatsuki, Dmitri Ianovski, Masabumi Nishikawa
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1064-1068
Blanket Material and Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22747
Articles are hosted by Taylor and Francis Online.
In most current designs of D-T fusion reactor blankets employing ceramic breeder materials, the use of a helium sweep gas containing 0.1 % of hydrogen is contemplated to extract tritium efficiently via isotopic exchange reactions. However, the isotope exchange reaction proceeds fast only at the more elevated temperatures, so that the rate of isotope exchange reactions is considerably low at lower temperatures. Taking into consideration that there is a broad temperature distribution within a blanket module, it is anticipated that the tritium bred in regions of lower temperatures will be poorly recovered. For this reason, there is still a need to develop techniques that contribute to the acceleration of the recovery of bred tritium at lower temperatures. In our previous works, the effect of catalytic active metal additives, such as Pt and Pd, on the heterogeneous isotope exchange reactions at the breeder-sweep gas interface was examined. The results indicate that the exchange reactions were considerably enhanced with the help of catalytic metals. In this work, the authors first examined the effect of the amounts of deposited catalytic active metal additives, such as Pt and Pd, on the heterogeneous isotope exchange reactions at the breeder-sweep gas interface. The results of this works indicate that the exchange reaction on the surface of Li4SiO4 is enhanced even if the amount of deposited Pd is as low as 0.015 %. It was also found that the deposition of 0.15 wt% of Pt enhances the exchange reaction rate. The authors also examined the effect of non-noble metal additive, such as Ni, on the heterogeneous isotope exchange reactions at the breeder-sweep gas interface. The results indicate that the exchange reactions were considerably enhanced with the help of Ni. Thus, it was found that Ni is also effective for the enhancement of the exchange reaction rate.