ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Nishikawa, K. Munakata, T. Takeishi, A. Baba, T. Kawagoe, S. Beloglazov, N. Nakashima, K. Hashimoto, Yokoyama, K. Okuno, Y. Morimoto, H. Moriyama, K. Kawamoto
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1025-1029
Blanket Material and Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22739
Articles are hosted by Taylor and Francis Online.
Release curve of bred tritium from various ceramic breeder materials such as Li2ZrO3, Li2TiO3, and Li4SiO4 were obtained using the out-pile temperature programmed desorption method in the Kyoto University Research Reactor. A 0.4g sample of breeder particles contained in a quartz tube was irradiated for 120s at the thermal neutron flux of about 2.8x1017n/m2s in N2 atmosphere under the temperature of 360K. Tritium release behavior was measured using an ionization chamber connected to the release tritium measurement apparatus. The sample was purged by dry N2, N2 with hydrogen of various partial pressure, or humidified N2 gas. The temperature of the sample bed was changed linearly from room temperature to 1073K with the rising rate of 5K/min.Characteristics of tritium release behavior obtained for various ceramic breeder materials under various purge gas conditions are compared in this paper.