ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Takao Kawano, Yoichi Sakuma, Masatoshi Ohta, Toshiki Kabutomori, Mamoru Shibuya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 981-987
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22731
Articles are hosted by Taylor and Francis Online.
A method of decomposing hydrogen compounds was developed by employing a zirconium nickel (ZrNi) alloy. This method enables all tritium compounds (HTO, CH3T, C2H5T, etc.) in an exhaust gas to be decomposed into their respective elements, and the tritium itself to be removed in the form of hydrogen gas (HT). The method was developed through a series of experiments using methane. Using previous study results, a chemical reaction equation of methane decomposition on a ZrNi alloy is proposed and discussed. To ascertain the mechanism of methane decomposition on a ZrNi alloy, alloy samples were examined based on X-ray diffraction spectra and SEM electronographies before, during, and after the experiments. It was found that, as the decomposition time elapsed, peaks attributed to a pure ZrNi alloy gradually disappeared and new ones appeared in the X-ray spectra. The new peaks were attributed to the presence of ZrC, pure Ni, and a simple carbon substance. This indicates that the Zr in a carbon-bound alloy results in ZrC generation that releases Ni metal, and part of the C generated from the methane decomposition remains as a simple, as-grown substance. From these results, the decomposition reaction of methane using a ZrNi alloy can be represented by an equation involving the alpha value. The equation shows that one ZrNi molecule decomposes (1+ α) molecules of methane and generates 2(1+α) molecules of hydrogen. The alpha value was estimated based on the volume of decomposed methane and the weight of the ZrNi alloy used in the experiments. It is known that the alpha value is strongly dependent on the experimental conditions and can be used as an index to evaluate the decomposition condition.