ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Mark T. Paffett, R. Scott Willms, Charles A. Gentile, Charles H. Skinner
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 934-938
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22722
Articles are hosted by Taylor and Francis Online.
Surface characterization studies were performed on graphite tiles used as first wall materials during DT operation of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. These ex situ analysis studies revealed a number of interesting and unexpected features. In this work we examined the spatial and (where possible) the depth distribution of impurity species deposited onto the plasma facing surfaces using X-ray Photo-electron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS). This work determined that beyond the predominant species of carbon and oxygen, common impurities included silicon, boron, lithium and sulfur. Oxygen content in the plasma facing tile surfaces ranged from 20 to 50 atomic percent [excluding H-isotopes], clearly indicating an extensive zone of oxidized carbon. By contrast, carbon tile surfaces not exposed to the plasma have surface oxygen contents ranging from 2 to 6 atomic percent. Analytical measurements of the secondary impurities (B, Li, Si, S) levels were on the order of 1–4 atomic percent, (boron and lithium were injected for wall conditioning in TFTR.) The core level binding energies of these impurity species were consistent with the presence of common oxides or hydroxides (e.g., BxOy, Li2O, LiOH, Silicates). XPS measurements performed in concert with depth profiling indicated that the tile oxidized zone was significantly deeper than 1 micrometer into the (averaged) surface. Surface analytical results clearly indicate that plasma operations clearly redeposit injected impurities (Li, B) and the depth profiles and distributions of the hydrogen isotopes may be impactedand/or influenced by this deposition process.An attempt at determining hydrogen isotope concentration distributions was made using positive ion SIMS. Specific regions of some surfaces clearly indicated the presence of m/z=3 (HD, T) and m/z=15 (CH3, CHD, CT). Preliminary data examination using positive ion SIMS examination indicates that these mass markers are substantially higher in the near surface region when compared with spectra recorded deeper in the surface region. The deuterium and tritium concentrations were; however, sufficiently low or compromised bycommon isobaric interferencesthat accurate isotopic distributions using SIMS were not possible. These findings are in agreement with results reported by others. [Morimoto et al, Sun et al, reference 3 Haasz et al]