ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mark T. Paffett, R. Scott Willms, Charles A. Gentile, Charles H. Skinner
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 934-938
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22722
Articles are hosted by Taylor and Francis Online.
Surface characterization studies were performed on graphite tiles used as first wall materials during DT operation of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. These ex situ analysis studies revealed a number of interesting and unexpected features. In this work we examined the spatial and (where possible) the depth distribution of impurity species deposited onto the plasma facing surfaces using X-ray Photo-electron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS). This work determined that beyond the predominant species of carbon and oxygen, common impurities included silicon, boron, lithium and sulfur. Oxygen content in the plasma facing tile surfaces ranged from 20 to 50 atomic percent [excluding H-isotopes], clearly indicating an extensive zone of oxidized carbon. By contrast, carbon tile surfaces not exposed to the plasma have surface oxygen contents ranging from 2 to 6 atomic percent. Analytical measurements of the secondary impurities (B, Li, Si, S) levels were on the order of 1–4 atomic percent, (boron and lithium were injected for wall conditioning in TFTR.) The core level binding energies of these impurity species were consistent with the presence of common oxides or hydroxides (e.g., BxOy, Li2O, LiOH, Silicates). XPS measurements performed in concert with depth profiling indicated that the tile oxidized zone was significantly deeper than 1 micrometer into the (averaged) surface. Surface analytical results clearly indicate that plasma operations clearly redeposit injected impurities (Li, B) and the depth profiles and distributions of the hydrogen isotopes may be impactedand/or influenced by this deposition process.An attempt at determining hydrogen isotope concentration distributions was made using positive ion SIMS. Specific regions of some surfaces clearly indicated the presence of m/z=3 (HD, T) and m/z=15 (CH3, CHD, CT). Preliminary data examination using positive ion SIMS examination indicates that these mass markers are substantially higher in the near surface region when compared with spectra recorded deeper in the surface region. The deuterium and tritium concentrations were; however, sufficiently low or compromised bycommon isobaric interferencesthat accurate isotopic distributions using SIMS were not possible. These findings are in agreement with results reported by others. [Morimoto et al, Sun et al, reference 3 Haasz et al]