ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kaname Kizu, Junichi Yagyu, Yoshitaka Gotoh, Takashi Arai, Naoyuki Miya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 907-911
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22716
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope release properties of boron coated carbon tiles from JT-60U were investigated through secondary ion mass spectroscopy (SIMS). X-ray photoelectron spectroscopy (XPS) analysis of boron layer made by He+B10D14 method with 43 nm in thickness showed that the B/(B+C) ratio was about 0.9. Hydrogen isotopes in the boron layer and in the carbon layer were released at above 573 K and 1023 K, respectively. This means that hydrogen isotopes in the boron layer on the carbon tiles in JT-60U are released at temperatures as low as 573 K. The He+B10D14 boronization method is clearly effective to attain the high purity deuterium plasma and the low recycling because this method does not introduce H during boronization process. Wall conditioning before boronization is important because hydrogen retained in the carbon is released during plasma discharge through boron coating.