ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Xiaohua Cao, Benfu Yang, Huajin Tan, Jingping Wan, Changyong Jiang
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 892-896
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22713
Articles are hosted by Taylor and Francis Online.
The adsorption and desorption behaviors of tritium on the surfaces of stainless steel, copper, molybdenum and Kovar were studied. After the exposure in tritium gas ( 9 kPa gaseous tritium, 2 minutes exposure at 873 K and 40 minutes cooling ), the tritium desorbed at room temperature and during heating up to 1123 K and total sorbed tritium of the samples were measured. The results showed that the desorbed tritium at room temperature was only 1∼6% of total sorbed tritium and its amount order was: Kovar >copper > stainless steel > molybdenum. The total desorbed tritium was ranging from 2 to 22 MBq/cm2, the largest is for Kovar and the smallest is for stainless steel. The tritium released from these materials at room temperature and during heating was mostly in the form of HTO. The thermo-desorption spectra of these materials were obtained. It was found that at least 5, 3, 3, 4 sorption states of tritium exist in the exposed Kovar, molybdenum, copper and stainless steel samples respectively. Doping 1% hydrogen in the carrying gas of helium during the thermo-desorption had rather effect on this process.