ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yung Sung Cheng, Yue Zhou, Charles A. Gentile, Charles H. Skinner
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 867-871
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22708
Articles are hosted by Taylor and Francis Online.
Amorphous tritiated carbon films are formed through co-deposition of the radioactive isotope tritium (3H or T) with carbon onto plasma facing surfaces in fusion plasmas. The Tokamak Fusion Test Reactor (TFTR), operated by the Princeton Plasma Physics Laboratory, was fueled by tritium and deuterium neutral beam injection and gas puffing. Tritium was co-deposited as amorphous hydrogenated carbon onto graphite tiles and stainless steel surfaces inside the reactor. Since termination of plasma operations, carbon tritide particles have remained in the air in the vessel. Dosimetric limits for occupational exposure to carbon tritide particles need to be established. The purpose of this study was to characterize carbon tritide particle samples inside the TFTR in terms of size, self-absorption of tritium beta, and dissolution rate in simulated lung fluid. Dose estimates of the inhaled carbon tritide particles can be calculated based on the dissolution rate, particle size, and self-absorption factor. The count median diameter and geometric standard deviation were 1.23 µm and 1.72, respectively, indicating that they are respirable particles and can stay suspended in the air for a longer time. The dissolution rate in the lung-simulated fluid was determined in a static system. The dissolution rate ranged from 10−1–10−3 per day in the first few hours, then it decreased to between 10−3 and 10−4. The retention curve of tritium in carbon indicated that >90% of the tritium remained in the particles after 110 d in the simulated lung fluid. This information is being used to support the establishment of respiratory protection requirements.