ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
S. Konishi, K. Tobita, S. Nishio, H. Okada. R. Kurihara
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 817-820
Design and Model | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22698
Articles are hosted by Taylor and Francis Online.
Technical issues on tritium technology are investigated from the aspects of processing, safety and fuel supply, considering the concept of DEMO plant following ITER as the next target. Fusion plant equipped with power blanket will contain high temperature heat transfer medium and bred tritium in a tritium cycle. Although the inventory and throughput may not increase drastically from ITER, tritium plant will require significant technical improvements characterized by the self-consistent tritium fuel cycle and safety function to maintain the tritium level in the power train at adequately low level. Tritium balance issue will be one of the most important features because it will strongly affect the fusion in energy market by supplying initial loading. Tritium processing for coolant that will be mainly used for normal operation will dominate the safety feature of the entire plant by its technical difficulty and importance. Under off-normal conditions, this coolant tritium process can remove possible spill within the confinement, and thus fusion plant will not have any major process dedicated for accidents. Tritium technology is essential to make fusion energy attractive from the aspect of socio-economics, and its success in development is of vital importance toward fusion power plant as viable energy source for future.