ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Sang Ge, Luo Xuejian, Liang HongWei, Sun Ying, Wu Sheng, Su Yongjun, Tu Mingjing, Luo Wenhua
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 758-763
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22688
Articles are hosted by Taylor and Francis Online.
In this paper, studies have been made concerning the poisoning mechanism. The processes of poisoning of LaNi47Al0.3 alloy are analyzed in detail by means of X-ray photoelectron spectroscopy (XPS), second ion mass spectroscopy (SIMS), Auger-energy spectroscopy (AES) and X-ray diffraction (XRD). The changes of the valence and the concentration distribution of the elements of the alloy LaNi4.7Al0.3 poisoned by CO are studied. The process and the mechanism of CO's poisoning of alloy LaNi47Al0.3 are proposed as follows: CO is absorbed on the surface of alloy, part of which reacts with La forming LaC2 and La2O3, or reacts with Ni forming NiO and C in the surface layer, the rest of the CO is decomposed into C and O, which diffuse into the bulk to react with La, Ni and Al. These results in phase-split reaction in surface layer of the particle, and enrichment of La and impoverishment Ni on the surface have taken place. The poisoning effect decreases with a increase of depth. The diffusion depth of C is within 600 Å in the surface layer, and that of O is within 1000 Å.The oxide film and carbonizing film prevent the H-storage alloys from further absorbing hydrogen, which leads to a deceleration of the H-storage capability. Moreover, The formation of a new phase with poor H-absorption capability is caused by the phase split reactions, which is one of reasons for the decrease of H-absorption property of the H-storage alloys.