ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
C.H. Skinner, C. A. Gentile, G. Guttadora, A. Carpe, S. Langish, K. M. Young, M. Nishi, W. Shu
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 716-720
Decontamination and Waste | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22680
Articles are hosted by Taylor and Francis Online.
A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focussed to an intensity, typically 8 kW/cm2, and rapidly scanned over the tile surface by galvanometer driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 °C were recorded by an optical pyrometer. Tritium was released and circulated in a closed loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next step fusion device will be discussed.