ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hideyuki Saitoh, Hirofumi Homma, Youichi Noya, Toshiyuki Ohnishi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 536-541
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22647
Articles are hosted by Taylor and Francis Online.
Tritium radioluminography was applied to pure vanadium and V-5 mol%Fe alloy to observe the tritium distribution and to evaluate the local tritium concentration in them. It was demonstrated that the tritium distribution at a microscopic area in the specimens was quantitatively and graphically displayed. In the pure vanadium specimen, the local tritium concentration was about three times different depending on the crystal orientation of the grains. The tritium radioactivity of the grains with (001) and (111) orientation are 1 Bq/mm2 and 0.4 Bq/mm2, respectively. These values correspond to the tritium concentration of 15 mol ppb and 6 mol ppb. The difference of the local tritium concentration was attributed to the variety of the morphology of precipitated hydride depending on the crystal orientation of the grains. For the radioactivity recorded in the imaging plate, the component of the X-rays generated from tritium in the specimen was only 2%, i.e., most of the intensity was attributed to the β-rays. In the V-Fe alloy specimen, it was shown that the tritium distribution correlates with iron segregation formed during solidification after the arc melting. The cross sectional observation showed that the local tritium concentration in equilibrium distribution depends on the local iron concentration in the specimen. The local tritium concentration gradually decreases from 115 mol ppb to 70 mol ppb as the iron concentration at the iron segregated region increases from 3 mol% to 4.5 mol%.