ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hideyuki Saitoh, Hirofumi Homma, Youichi Noya, Toshiyuki Ohnishi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 536-541
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22647
Articles are hosted by Taylor and Francis Online.
Tritium radioluminography was applied to pure vanadium and V-5 mol%Fe alloy to observe the tritium distribution and to evaluate the local tritium concentration in them. It was demonstrated that the tritium distribution at a microscopic area in the specimens was quantitatively and graphically displayed. In the pure vanadium specimen, the local tritium concentration was about three times different depending on the crystal orientation of the grains. The tritium radioactivity of the grains with (001) and (111) orientation are 1 Bq/mm2 and 0.4 Bq/mm2, respectively. These values correspond to the tritium concentration of 15 mol ppb and 6 mol ppb. The difference of the local tritium concentration was attributed to the variety of the morphology of precipitated hydride depending on the crystal orientation of the grains. For the radioactivity recorded in the imaging plate, the component of the X-rays generated from tritium in the specimen was only 2%, i.e., most of the intensity was attributed to the β-rays. In the V-Fe alloy specimen, it was shown that the tritium distribution correlates with iron segregation formed during solidification after the arc melting. The cross sectional observation showed that the local tritium concentration in equilibrium distribution depends on the local iron concentration in the specimen. The local tritium concentration gradually decreases from 115 mol ppb to 70 mol ppb as the iron concentration at the iron segregated region increases from 3 mol% to 4.5 mol%.