ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
A.V. Golubev, S.V. Demina, S.V. Mavrin, M.V. Glagolev, N.T. Kazakovsky, Y.A. Belot, V.N. Golubeva, S.E. Misatyuk
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 478-482
Environment | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22635
Articles are hosted by Taylor and Francis Online.
This paper presents further results of studies of tritium oxidation in unsaturated soil by microorganisms. The objective of the study was to develop a laboratory technique to study the kinetics of HT deposition to soil due to its oxidation and the kinetics of HTO retention in local soils, which are used for agriculture and forestry. Kinetics of HT to HTO oxidation and deposition to soil has been studied in laboratory conditions. An experimental cell was developed to prepare a mixture of air, water vapor and tritium gas and to pump the mixture through the soil sample under study. The activity of HTO converted in the soil sample during a certain period of time was used to determine the oxidation rate. This rate varies, depending on the catalytic and/or biological activity of the soil material. Theoretical considerations have shown that the deposition rate can be expressed by the effective rate of oxidation, which formally corresponds to the first-order HT oxidation. The rate of HT to HTO conversion and deposition to soil is required for assessment of consequences of HT release into the atmosphere.