ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
A.V. Golubev, A.Yu. Aleinikov, A.N. Vereshchaga, L.F. Belovodsky, A.V. Stengach, I. L. Kharkhordin, S.V. Mavrin, M.M. Khabibulin, V.G. Rumynin
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 458-463
Environment | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22631
Articles are hosted by Taylor and Francis Online.
To assess long-term environmental safety of a tritium facility, prediction of consequences of potential tritium releases in the environment is needed both during routine operations and in case of accidents. Modeling is the only method to obtain such assessment without any environmental contamination. The current paper describes the TRIEF model designed to assess consequences of long-term atmospheric tritium emission for such environmental compartments as atmosphere, soil, plants; tritium contamination of ground and underground water is also included. The model takes into account tritium transport among all of the compartments. The model has been successfully validated in model-experiment intercomparison study in framework of the IAEA co-ordinated research programme “BIOMASS” on assessment of environmental contamination from the continuous source of atmospheric tritium release. The experimental data included tritium concentrations in the atmospheric moisture, vegetation, soil and the overlying snow cover. The modelling period was 20 years. Most of the predicted values agreed with observations within experimental uncertainties, which were a factor of 2. The TRIEF model is based on both HTO equilibrium and material balance approach in all the compartments. Average concentrations in atmosphere are calculated by using the Gauss-type model for primary and secondary source. HT and HTO behavior are modeled separately. Both wet and dry deposition of HTO is taken into account in case of HTO emission. HTO concentration in soil moisture is determined by the moisture balance equation. HTO concentration in plant tissue free water and organically bound tritium are estimated as a combination of HTO content in soil moisture and atmospheric humidity. HTO contamination of aquifer is modeled using available finite-differences codes within 12 hydro-geological strata.