ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kitabata, Takuya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 356-360
Plenary | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22611
Articles are hosted by Taylor and Francis Online.
Two heavy water upgraders have been developed and operated in the Fugen Nuclear Power Station to keep the isotopic purity of the moderator around 99.7 wt% and to recover tritium from the degraded heavy water. One of the upgraders is a combined electrolysis catalyst exchange (CECE) process that consists of 90 stages of catalytic water-hydrogen isotopic separation units. This upgrader treats 10 m3/y of degraded heavy water, produces reactor grade heavy water, and lowers the tritium and heavy water in the waste to <3700 Bq/cm3 and <0.1wt%, respectively. The other one is simple electrolysis system and terminated its operation in 1999. Heavy water recycle is completed with these two upgraders in the Fugen. A filter-separation-type tritium monitor was developed. Daughter species of Rn-Tn are separated from sampled gas with hollow fiber filters made of perfluorosulfuric-acid resin before introducing to an ionization chamber. The detection limit of the monitor is 7.4E-03 Bq/cm3-air. The upgraders and monitor contributed to control airborne and liquid tritium releases from the Fugen lower than 18 TBq/y and 11 TBq/y, respectively.