ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Songtao Wu, Weiyue Wu, Yinnian Pan, Damao Yao, Ziying Liao, Yanfang Bi, Zhuoming Chen, Baozeng Li, Yuntao Song, Wenge Chen, Jin Fang, Peide Weng, Daming Gao, Jiangang Li, Yuanxi Wan, Honqiang Li, Wanjiang Pan, Junling Chen, Jing Wei
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 146-154
Technical Paper | doi.org/10.13182/FST02-A222
Articles are hosted by Taylor and Francis Online.
The HT-7U superconducting (SC) tokamak will have a long-pulse capability, a flexible poloidal field (PF) system, and auxiliary heating and current drive systems, and it will be able to accommodate divertor heat loads that make it an attractive test for the development of advanced tokamak operating modes. The greatest progress has been made on the engineering design of the HT-7U SC tokamak device, including the calculation and simulation of plasma shaping and control of the PF system as well as calculation and analyses of stress and deformation distribution on the main components caused by dynamic electromagnetic forces, vacuum pressure, temperature differences, etc. Significant research and development progress on the design and the testing of the cable-in-conduit conductor of the toroidal field and PF has been made. A test facility system for the SC magnets of HT-7U has been set up and operated.