ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Eric Tucker, J. Gilligan
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 118-129
Technical Paper | doi.org/10.13182/FST98-A22
Articles are hosted by Taylor and Francis Online.
The vapor shield outward expansion rate can be shown to affect energy transport through the vapor shield, thereby influencing the vapor shield effectiveness. To more accurately determine the divertor plate erosion depth from a tokamak fusion reactor disruption or plasma gun sources, it is then necessary to include source plasma (beam) momentum transfer and beam mass deposition to the expanding vapor shield. Other factors such as incident heat flux and target Z value are shown to influence the vapor shield expansion rate as well. Code calculations show that increasing heat fluxes can increase the fraction of vapor shield kinetic energy and lower the fraction f of incident energy transported to the solid. Low-Z materials give higher kinetic energies as well but result in a higher f due to a lower specific heat. These results can also be applied to plasma gun technology to help increase its efficiency. In an electrothermal gun, the plasma expansion rate (rate at which vaporized material travels out of the gun) can cause differing plasma residence times and differing plasma temperatures as well. Determining the mechanisms that influence the vapor shield expansion rate and showing its sensitivity on f can give us a qualitative way of determining how changing parameters can influence plasma gun efficiency. Low-energy (<200 eV) disruption plasmas add much mass as well as momentum to a vapor shield. Mass addition can cause the vapor shield temperature and f to differ for a given incident heat flux and change the vapor shield expansion rate as well. Also, we find that deuterium's shielding effectiveness differs from carbon.