ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Toshihide Tsunematsu, Masahiro Seki, Hiroshi Tsuji, Kiyoshi Okuno, Takashi Kato, Kiyoshi Shibanuma, Masaya Hanada, Kazuhiro Watanabe, Keishi Sakamoto, Tsuyoshi Imai, Koichiro Ezato, Masato Akiba
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 75-93
Technical Paper | doi.org/10.13182/FST02-A214
Articles are hosted by Taylor and Francis Online.
Japanese contributions to ITER engineering design activities are presented, together with an introduction of the objectives and design of the ITER, whose program has been carried out through international collaboration by the European Union, Japan, Russian Federation, and the United States. New technologies have been produced through the development, fabrication, and testing of scalable models in the fields of superconducting magnets, reactor structures with vacuum vessels, remote-maintenance machines, high-heat-flux plasma facing components, neutral beam injectors, high-power millimetre-wave generators, etc. As major contributions from Japan, development and testing results of a 13-T, 640-MJ, Nb3Sn pulsed magnet; an 18-deg sector of a vacuum vessel with a height of 15 m and a width of 9 m; CFC armor for a CuCrZr cooling tube that withstood 20 MW/m2; a 31 mA/cm2 negative ion beam source; a 1-MeV beam accelerator; and a 1-MW 170-GHz gyrotron are described.