ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Wayne R. Meier
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 385-391
Technical Paper | Blanket Engineering | doi.org/10.13182/FST83-A20862
Articles are hosted by Taylor and Francis Online.
Monte Carlo neutronics calculations have been carried out to compare the effects of chamber ports on the neutron leakage and blanket performance for lithium and lead-lithium blankets. A spherical chamber with diametrically opposed, conical penetrations through the blanket and a 14.1-MeV point source at its center is the basis for the comparison. The total neutron leakage through ports in a lithium blanket is about two times greater than one would estimate based on the solid angle fraction subtended by the holes. For a blanket comprised primarily of the lead-lithium eutectic, Pb83Li17, the leakage per deuterium-tritium neutron is about six times the subtended solid angle fraction. As a result of the enhanced neutron leakage, the tritium-breeding ratio and neutron energy deposited in the blanket decrease more rapidly than the loss of blanket coverage. For example, for a chamber in which the ports subtend 5% of the total solid angle, the tritium-breeding ratios are ∼s and ∼20% less than the results without ports for the lithium and Pb83Li17 blankets, respectively. The neutron energy deposited in the blanket decreases ∼7% for lithium and ∼14% for Pb83Li17 for the same 5% loss in blanket coverage.