ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Wayne A. Houlberg, John T. Hogan
Fusion Science and Technology | Volume 3 | Number 2 | March 1983 | Pages 244-258
Technical Paper | Special Section Content | doi.org/10.13182/FST83-A20848
Articles are hosted by Taylor and Francis Online.
Methods for incorporating magnetohydrodynamic equilibria and internal instabilities into tokamak transport codes are reviewed with emphasis on how the models may be extended to reactor plasmas. Instabilities are characterized from a computational view as being either intermittent or continuous modes. Intermittent disturbances are treated adiabatically whereas saturated instabilities can be handled through enhanced transport coefficients. The m = 1/n = 1 mode serves as an example of how the character of an instability can change as we proceed from low-beta resistive plasmas to high-beta collisionless plasmas. The implications for reactor thermal dynamics of finite-beta-induced transport are discussed in terms of Impurity Studies Experiment-B observations and analysis.