ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
William L. Barr, Ralph W. Moir
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 98-111
Technical Paper | Energy Storage, Switching, and Conversion | doi.org/10.13182/FST83-A20820
Articles are hosted by Taylor and Francis Online.
The power carried out through the ends of a mirror fusion reactor by escaping plasma can be converted directly into electricity by a plasma direct converter. Test results from three plasma direct converters are described. The first two tests were performed with a steady-state power density up to 70 W/cm2 to simulate the predicted conditions on a reactor (∼100 W/cm2). A single-stage unit and a two-stage unit of the venetian-blind type were tested up to 100 kV and 6 kW for a total time of ∼80 h. In scaling up in energy from previous experiments, the new effects that became important were the ionization of background gas and the release of secondary electrons at surfaces. In the third test, a single-stage unit was mounted on the end wall of the Tandem Mirror Experiment (TMX) device where it intercepted some of the end-loss plasma. Of the 138 W incident on the direct converter, 79 W were recovered and 12 W were used to power the suppressor grid. The net efficiency was therefore 48%; this was in good agreement with predictions for a single-stage unit and the TMX plasma parameters. These test results lend confidence to our direct-converter designs for fusion reactors. The remaining area of concern includes the general problem imposed by high-voltage breakdown in a large direct converter with many joules of stored energy.