ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Terry R. Galloway
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 73-88
Overview | Nonelectrical Application | doi.org/10.13182/FST83-A20818
Articles are hosted by Taylor and Francis Online.
An engineering scoping study was conducted at the US. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. We found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of ∼650°C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable. Further development effort is recommended.