ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Clay E. Easterly
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 723-729
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST82-A20811
Articles are hosted by Taylor and Francis Online.
Fusion power stations utilizing the deuterium-tritium reaction may not result in significantly different occupational radiation exposures than are obtained currently at light water reactor (LWR) stations, even with modest advances in remote control technology. The primary reasons for this observation follow. 1. Mobile activation products will be generated at about twice the rate of LWRs. 2. A significantly greater amount of work in elevated radiation zones is associated with repair and maintenance of not only the blanket and first wall, but also the large number of diagnostic and auxiliary systems required for fusion that are not required for fission. 3. The prevalence of tritium throughout most of the reactor complex and the fuels and materials cycle. Very few specific numbers can be estimated with reasonable certainty at present; however, the general picture of occupational hazards at fusion reactors is slowly taking a rough form.