ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
H. W. Kugel, M. Ulrickson
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 712-722
Technical Paper | First-Wall Technology | doi.org/10.13182/FST82-A20810
Articles are hosted by Taylor and Francis Online.
The inner wall protective plates for the Poloidal Divertor Experiment Tokamak are designed to absorb 8 MW of neutral deuterium beam power at maximum power densities of 3 kW/cm2 for pulse lengths of 0.5 s. Preliminary studies indicate that the design could survive several pulses of 1-s duration. The design consists of a tile and mounting plate structure. The mounting plates are water cooled to allow short duty cycles and beam calorimetry. The temperature and flow of the coolant are measured to obtain the injected power. A thermocouple array on the tiles provides beam position and power density profiles. Several material combinations for the tiles were subjected to thermal tests using both electron and neutral beams, and titanium-carbide-coated graphite was selected as the tile material. The heat transfer coefficient of the tile backing plate structure was measured to determine the maximum pulse rate allowable. The design of the armor system allows the structure to be used as a neutral beam power diagnostic and as an inner plasma limiter. The electrical and cooling systems external to the vacuum vessel are discussed.