ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ronald C. Kirkpatrick
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 707-711
Technical Paper | ICF Target | doi.org/10.13182/FST82-A20809
Articles are hosted by Taylor and Francis Online.
Only rudimentary progress has been made toward a practical theory of instabilities and their effects in small fusion targets. This is partly because a practical theory must combine several complicated physical phenomena. Most analytic studies of small amplitude Rayleigh- Taylor instabilities have neglected rotational flow, and the transition to large amplitude (nonlinear) behavior is probably dependent on poorly known fluid properties. Also, heat transfer and conduction may provide stabilization under some circumstances, while shear flow leads to Helmholtz instability, and ultimately some degree of pusher fragmentation must occur. Several mechanisms may couple the instabilities to the deuterium-tritium (D-T). The chief concern is added energy loss from the D-T volume and may result from increased area of a distorted interface, the enhanced emission from the D-T due to impurities introduced by the instabilities, and energy deposition by the D-T alphas in the pusher material rather than in the D-T.