ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Ronald J. Onega, Bill M. Su
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 667-686
Technical Paper | Blanket Engineering | doi.org/10.13182/FST82-A20806
Articles are hosted by Taylor and Francis Online.
Calculations of the steady-state neutron, photon, and temperature distributions as well as the transient thermal distribution following a major plasma disruption (MPD) in the first wall and blanket region of an engineering type of controlled thermonuclear reactor was made. A canister blanket design was considered and both the incident neutron and secondary gamma-ray heating were used in calculating the volumetric heat source rate. An average value of the volumetric heat source rate was calculated to be ∼0.5 MW/m3 and the neutron wall loading was 2. 38 MW/m2. After steady-state conditions were obtained, major plasma disruption times of 10 and 24 ms were assumed for the transient calculations. For each case, a constant velocity model was assumed for the surface heat flux impinging on the first wall during an MPD. Neutronic studies using the ANISN code provided volumetric heat source rates that were used to do the thermal analysis. With these volumetric heat source rates obtained, a heat conduction code, HEATING5, was run for the steady-state temperature distribution. Using the steady-state temperature distribution as an initial condition, HEATING5 was run again for the transient thermal study, which included the surface heat flux due to the disruption, together with a volumetric heat source rate resulting from the eddy currents induced in the wall following an MPD. Results show that there is a possibility of melting portions of the first wall if the disruption time of 10 ms is used, while no melting is possible for the 24-ms case; however, a maximum transient temperature of ∼1000°C on the first wall does occur. The temperature in the blanket region remained the same as before the MPD since the transient takes place so rapidly that the effects were felt most by the first wall. The average number of abortions allowed before failure of the first wall was 200 thermal cycles for the 24-ms case.