ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Ronald J. Onega, Bill M. Su
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 667-686
Technical Paper | Blanket Engineering | doi.org/10.13182/FST82-A20806
Articles are hosted by Taylor and Francis Online.
Calculations of the steady-state neutron, photon, and temperature distributions as well as the transient thermal distribution following a major plasma disruption (MPD) in the first wall and blanket region of an engineering type of controlled thermonuclear reactor was made. A canister blanket design was considered and both the incident neutron and secondary gamma-ray heating were used in calculating the volumetric heat source rate. An average value of the volumetric heat source rate was calculated to be ∼0.5 MW/m3 and the neutron wall loading was 2. 38 MW/m2. After steady-state conditions were obtained, major plasma disruption times of 10 and 24 ms were assumed for the transient calculations. For each case, a constant velocity model was assumed for the surface heat flux impinging on the first wall during an MPD. Neutronic studies using the ANISN code provided volumetric heat source rates that were used to do the thermal analysis. With these volumetric heat source rates obtained, a heat conduction code, HEATING5, was run for the steady-state temperature distribution. Using the steady-state temperature distribution as an initial condition, HEATING5 was run again for the transient thermal study, which included the surface heat flux due to the disruption, together with a volumetric heat source rate resulting from the eddy currents induced in the wall following an MPD. Results show that there is a possibility of melting portions of the first wall if the disruption time of 10 ms is used, while no melting is possible for the 24-ms case; however, a maximum transient temperature of ∼1000°C on the first wall does occur. The temperature in the blanket region remained the same as before the MPD since the transient takes place so rapidly that the effects were felt most by the first wall. The average number of abortions allowed before failure of the first wall was 200 thermal cycles for the 24-ms case.