ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Mahmoud Z. Youssef, Robert W. Conn, Charles W. Maynard
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 648-666
Technical Paper | Blanket Engineering | doi.org/10.13182/FST82-A20805
Articles are hosted by Taylor and Francis Online.
Cross-section uncertainty covariance matrices are generated and used with sensitivity coefficients to obtain estimates for the uncertainties in design parameters of a particular class of fission-fusion hybrid reactors, the SOLASE-H design. The analysis shows that the uncertainty in the 233U production ratio is ∼4% and is due mostly to errors associated with the lead cross sections. Reducing the uncertainty in the Pb(n,2n'), Pb(n,3n'), and the Pb(n,nonelastic) cross sections, particularly in the energy range of 9 to 20 MeV, will significantly reduce this uncertainty. Improving the Th( n, γ) cross section in the energy range of 0.35 to 3.35 keV can lead to a 40% reduction in the uncertainty in the 233U-breeding ratio. It is found that more accurate evaluation of the Pb(n,nonelastic) cross section in the energy range of 0.73 to 14 MeV can reduce the uncertainty in tritium breeding from 6Li by ∼25%. The uncertainty of only 1% found in the tritium-breeding ratio from 7Li indicates that present nuclear data uncertainties are adequately small. Uncertainty in displacements per atom in Zircaloy-2 cladding due to uncertainties in the Pb(n,inelastic) cross section is small. The analysis reveals the importance of reducing uncertainties in the Th(n,fission) cross sections to minimize the uncertainty in the heating rate from nuclear reactions. It is found that uncertainties in the 6Li(n,α.) cross section are acceptable in calculating the various nuclear parameters of the SOLASE-H design.