ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Masami Ohnishi
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 609-616
Technical Paper | Plasma Engineering | doi.org/10.13182/FST82-A20801
Articles are hosted by Taylor and Francis Online.
Since an ignited deuterium-tritium plasma of a moving ring compact torus reactor (MRCTR) is thermally unstable at the operating temperature, suppression of the thermal instability is an essential issue for maintaining the stationary burning of a plasma. The feedback stabilization by means of major radial compression-decompression is proposed for a burn control in an MRCTR. The compression-decompression is carried out through the regulation of the solenoidal magnetic field according to the deviation of the ion temperature from the equilibrium value. The dynamics of a plasma core with a feedback control is calculated in a zero-dimensional plasma model assuming the empirical confinement scalings obtained in the present tokamak experiments. The effects of ion density on the dynamics are also studied for two extreme cases of complete particle recycling and perfect pumping. The scheme is found to be effective for the burn control. The deviations of a major radius and a fusion output power are less than several percents of the equilibrium values during the control to suppress the temperature excursion. The rate of change in the magnetic field for the control is as slow as 500 G/s.