ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Masami Ohnishi
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 609-616
Technical Paper | Plasma Engineering | doi.org/10.13182/FST82-A20801
Articles are hosted by Taylor and Francis Online.
Since an ignited deuterium-tritium plasma of a moving ring compact torus reactor (MRCTR) is thermally unstable at the operating temperature, suppression of the thermal instability is an essential issue for maintaining the stationary burning of a plasma. The feedback stabilization by means of major radial compression-decompression is proposed for a burn control in an MRCTR. The compression-decompression is carried out through the regulation of the solenoidal magnetic field according to the deviation of the ion temperature from the equilibrium value. The dynamics of a plasma core with a feedback control is calculated in a zero-dimensional plasma model assuming the empirical confinement scalings obtained in the present tokamak experiments. The effects of ion density on the dynamics are also studied for two extreme cases of complete particle recycling and perfect pumping. The scheme is found to be effective for the burn control. The deviations of a major radius and a fusion output power are less than several percents of the equilibrium values during the control to suppress the temperature excursion. The rate of change in the magnetic field for the control is as slow as 500 G/s.