ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ehud Greenspan, George H. Miley
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 590-608
Technical Paper | Plasma Engineering | doi.org/10.13182/FST82-A20800
Articles are hosted by Taylor and Francis Online.
Partially catalyzed deuterium (PCD) fuel cycles and their sensitivity to ash buildup, radiation losses, Ti/Te. and 3He consumed are investigated. The study is machine independent, using a simple zero-dimensional steady-state model. The PCD fuel cycles include semi-catalyzed-deuterium where only a fraction of the 3He fuses and tritium-catalyzed-deuterium where 3He extracted from the plasma is converted into tritium, which is reinjected. Also considered is tritium-assisted operation where a fraction of the fusion neutrons is used to produce tritium, which is added to the PCD plasma. The PCD and tritium-assisted operation is shown to be attractive for certain nonelectrical applications. They avoid 3He recirculation required for catalyzed-deuterium (Cat-D) operation and enable simplified blanket designs. The ignition temperature, neт, and power density of PCD plasmas are very energy-balance sensitive, but under certain conditions these properties can be comparable or superior to those of Cat-D. Cyclotron radiation losses can significantly impair, whereas tritium assistance can strongly improve, PCD performance.