ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yasushi Seki, Hiromasa Iida, Robert T. Santoro, Hiromitsu Kawasaki, Michinori Yamauchi
Fusion Science and Technology | Volume 2 | Number 2 | April 1982 | Pages 272-285
Technical Paper | Shielding | doi.org/10.13182/FST82-A20760
Articles are hosted by Taylor and Francis Online.
The effects of radiation streaming through the neutral beam injector (NBI) port and divertor throat of a tokamak fusion reactor, the INTOR-J, was evaluated using Monte Carlo and discrete ordinates methods. Radiation streaming through the NBI port is found to be tolerable when a thick drift tube support acts as an effective shield. Neutron streaming through the divertor throat, however, makes the shutdown dose too high for personnel access into the reactor room. The radiation levels in the reactor room resulting from leakage through the NBI room walls are far smaller than that from leakage through the bulk shield, except behind the NBI room. The Monte Carlo-Monte Carlo and discrete ordinates—Monte Carlo coupling techniques used in the present study are shown to be very effective for the radiation streaming calculations.