ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ihor O. Bohachevsky
Fusion Science and Technology | Volume 2 | Number 1 | January 1982 | Pages 110-119
Technical Paper | ICF Chamber Engineering | doi.org/10.13182/FST82-A20741
Articles are hosted by Taylor and Francis Online.
Many inertial confinement fusion reactors will employ liquid lithium to breed tritium, to remove heat from reactor vessels, and to protect the interior walls of the vessel. Heat loads on the liquid lithium will consist of intense pulses that are short in comparison to hydrodynamic and thermal relaxation times and therefore will generate pressure pulses and/or pressure waves. The generation process is investigated analytically and numerically. Analytic solutions are derived for liquid blankets with thicknesses comparable to the neutron energy deposition depth contained between two structural shells and for free surface layers with thicknesses much smaller than the depth of neutron energy deposition. Results indicate that the amplitudes of the neutron-generated pressure waves are comparable to the mean pressure rise that would be obtained if the energy were deposited so slowly and uniformly that the waves did not develop. Numerically investigated are pressure pulses in lithium layers, which are initially at the vapor pressure. Results indicate that rapid heating occurs at constant specific volume (isochorically) and therefore results in a sharp and intense pressure rise. However, the resulting pressure wave dissipates after propagating only a few millimetres through the layer if the lithium contains any fraction of the vapor phase.