ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
Dennis J. Strickler, Lee A. Berry, Steven P. Hirshman
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 107-115
Technical Paper | doi.org/10.13182/FST02-A206
Articles are hosted by Taylor and Francis Online.
A method is presented for designing coils for compact stellarators. In contrast to methods that select a finite number of coils from an optimal continuous surface current distribution, the COILOPT code solves for the optimal parameters in an explicit representation of modular coils on a toroidal winding surface that is well separated from the plasma boundary, together with the coefficients of the winding surface. The problem is posed as a balance between approximating a prescribed magnetic configuration and satisfying certain critical engineering requirements. Results are presented for quasi-axisymmetric and quasi-poloidal compact stellarator designs.