ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Xing Zhong Li
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 63-68
Technical Paper | doi.org/10.13182/FST02-A201
Articles are hosted by Taylor and Francis Online.
The nuclear fusion data for deuteron-triton resonance near 100 keV are found to be consistent with the selective resonant tunneling model. The feature of this selective resonant tunneling is the selectivity. It selects not only the energy level, but also the damping rate (nuclear reaction rate). When the Coulomb barrier is thin and low, the resonance selects the fast reaction channel; however, when the Coulomb barrier is thick and high, the resonance selects the slow reaction channel. This mechanism might open an approach toward fusion energy with no strong nuclear radiation.