ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Parag Vyas, Denis Mustafa, A. William Morris
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 97-105
Technical Paper | doi.org/10.13182/FST98-A20
Articles are hosted by Taylor and Francis Online.
Theoretical and experimental work on the vertical position control system on the COMPASS-D tokamak is described. An analog proportional + derivative (P + D) system is currently used, and two important sources of disturbance are observed in the system. One source is 600-Hz noise from thyristor power supplies, and the other is impulselike disturbances due to edge-localized modes (ELMs). A high-order controller is developed using the [script H] technique to reduce the effect of the 600-Hz noise. This initial design is based on a model of the plasma position system obtained from system identification. The controller is implemented on a digital signal processor and tested on COMPASS-D. The controller synthesis procedure and the experimental results are presented. Large, separated ELMs on COMPASS-D cause impulselike responses to be observed in the power amplifier and position signals. Closed formulas are given for the minimum possible peak of the impulse response of the system, which is used to find the limit of performance.