ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Friedrich Arendt, Peter Komarek
Fusion Science and Technology | Volume 1 | Number 4 | October 1981 | Pages 552-569
Technical Paper | Magnet System | doi.org/10.13182/FST81-A19948
Articles are hosted by Taylor and Francis Online.
One of the major components in a fusion reactor for which a safety analysis must be carried out is the magnet system. We attempt to provide a systematic answer to the hazard potential of superconducting magnets for fusion. Event trees are developed, demonstrating the predictable behavior in all cases. It can be seen that usual failure events cause only a temporary shutdown of the magnet system without damage. Less likely accidental events will lead to single-current arcs with moderate internal damage of a single coil. Only sudden complete rupture of a turn can be followed by a multiple-current arcing resulting in a very high power arc with a certain probability of burning through the coil case, thus damaging other reactor components before extinction. Missile generation of winding parts can only occur in the very hypothetical case of simultaneous rupture of the winding at a sufficiently large distance apart. Even then, the developed kinetic energy will be less than that of airplane crashes considered in the safety analysis of nuclear power plants.