ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Peter Mioduszewski
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 277-286
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19897
Articles are hosted by Taylor and Francis Online.
The purpose of a volumetric neutron source is the development and testing of the nuclear components of a fusion reactor. The main issue in this case is very long pulse operation, such as 2 weeks at a time, to elicit the nuclear effects to be studied. Operation at this pulse length will cause extreme erosion if the edge plasma cannot be tailored appropriately. Typical erosion rates that can be expected at some of the plasma-facing components such as the divertor target or the divertor baffles, without specifying a particular type of device, are analyzed. Accurate predictions of erosion and redeposition require not only knowledge of the erosion mechanism but also detailed knowledge of the plasma parameters, plasma flows, and their spatial distributions, as well as temperature distributions of plasma-facing components and other parameters. It is, therefore, a very difficult task to predict erosion/redeposition rates and patterns for future machines. Nevertheless, some estimate is needed of expected erosion rates, crude as they may be, so future machines for long-pulse operation can be designed. For that purpose, physical sputtering is examined only as a basis for erosion estimates and does not take into account the important processes of chemical sputtering and radiation-enhanced sublimation or the complicated redeposition processes. Even with this simplified approach, one can grasp the order of magnitude of erosion rates that will be encountered when a plasma device is operated for long pulses and at high-duty cycles.