ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Peter Mioduszewski
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 277-286
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19897
Articles are hosted by Taylor and Francis Online.
The purpose of a volumetric neutron source is the development and testing of the nuclear components of a fusion reactor. The main issue in this case is very long pulse operation, such as 2 weeks at a time, to elicit the nuclear effects to be studied. Operation at this pulse length will cause extreme erosion if the edge plasma cannot be tailored appropriately. Typical erosion rates that can be expected at some of the plasma-facing components such as the divertor target or the divertor baffles, without specifying a particular type of device, are analyzed. Accurate predictions of erosion and redeposition require not only knowledge of the erosion mechanism but also detailed knowledge of the plasma parameters, plasma flows, and their spatial distributions, as well as temperature distributions of plasma-facing components and other parameters. It is, therefore, a very difficult task to predict erosion/redeposition rates and patterns for future machines. Nevertheless, some estimate is needed of expected erosion rates, crude as they may be, so future machines for long-pulse operation can be designed. For that purpose, physical sputtering is examined only as a basis for erosion estimates and does not take into account the important processes of chemical sputtering and radiation-enhanced sublimation or the complicated redeposition processes. Even with this simplified approach, one can grasp the order of magnitude of erosion rates that will be encountered when a plasma device is operated for long pulses and at high-duty cycles.