ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Carmen García-Rosales, Sigrid Deschka, Wolfgang Hohenauer, Reiner Duwe, Eric Gauthier, Jochen Linke, Martin Lochter, Werner K. W. M. Malléner, Laurenz Plöchl, Peter Rödhammer, Armando Salito, Asdex-Upgrade Team
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 263-276
Technical Paper | First Wall Technology | doi.org/10.13182/FST97-A19896
Articles are hosted by Taylor and Francis Online.
Tiles of fine-grain graphite coated with tungsten layers by different plasma spray techniques (thickness 100 to 550 µm) and by physical vapor deposition (PVD) (thickness 20 to 100 µm) were subjected to heat fluxes, as expected for the divert or of the Axially Symmetric Divertor Experiment (ASDEX)-Upgrade tokamak. By a stepwise increase of the applied heat flux up to 16 MW/m2 and different pulse durations (1 to 5 s), the maximum load for disabling damage of the coating was determined. The fatigue behavior of the coatings was investigated by cyclic loading. The results show that plasma spray coatings are able to withstand heat loads up to 15 MW/m2 for a 2-s pulse without structural changes and cyclic loading with 1000 cycles at 10 MW/m2 and a 2-s pulse. The PVD coatings show damage by crack formation and melting at slightly lower heat loads than most of the plasma spray coatings. Under cyclic loading, the thin PVD coatings fail by extensive crack formation. The results of the tests indicate that the good performance of the plasma spray coatings is related to their higher porosity, which provides a crack-arresting mechanism, and to their mechanical strength.