ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
G. Bellanger, J. J. Rameau
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 196-219
Technical Paper | Tritium System | doi.org/10.13182/FST97-A19891
Articles are hosted by Taylor and Francis Online.
To better understand the differences between R30003 alloy corrosion in tritiated water and in H2O, a detailed study was made of the oxide layers produced in the former medium. The R30003 alloy was selected because of its nuclear corrosion resistance and its hardness, ensuring leaktightness when assembled with soft alloys. The characteristics and morphology of the formed oxide were investigated in corrosion potential, passive, and passive-transpassive regions where breakdown occurs. With tritiated water, the repassive potential is slightly lower than that obtained with H2O. Consequently, localized corrosion, which leads to corrosion in oxide sublayers, is greater and is produced by the effects of excited radiolytic products formed by time-dependent O3H− diffusion into the oxide. If enough tritium decay energy is absorbed by the oxide layer, excited and ionized states of the oxide are formed. Thus, reactive radiolytic species and voids accumulate in a small volume below the oxide surface. Spreading of these voids causes oxide cracking, leading to peeling and wall formation. Mechanisms for both processes and the electrochemical properties are described. The majority of the ionic carriers are in the peels, contributing to oxide delamination and thus steel degradation.