ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G. Bellanger, J. J. Rameau
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 196-219
Technical Paper | Tritium System | doi.org/10.13182/FST97-A19891
Articles are hosted by Taylor and Francis Online.
To better understand the differences between R30003 alloy corrosion in tritiated water and in H2O, a detailed study was made of the oxide layers produced in the former medium. The R30003 alloy was selected because of its nuclear corrosion resistance and its hardness, ensuring leaktightness when assembled with soft alloys. The characteristics and morphology of the formed oxide were investigated in corrosion potential, passive, and passive-transpassive regions where breakdown occurs. With tritiated water, the repassive potential is slightly lower than that obtained with H2O. Consequently, localized corrosion, which leads to corrosion in oxide sublayers, is greater and is produced by the effects of excited radiolytic products formed by time-dependent O3H− diffusion into the oxide. If enough tritium decay energy is absorbed by the oxide layer, excited and ionized states of the oxide are formed. Thus, reactive radiolytic species and voids accumulate in a small volume below the oxide surface. Spreading of these voids causes oxide cracking, leading to peeling and wall formation. Mechanisms for both processes and the electrochemical properties are described. The majority of the ionic carriers are in the peels, contributing to oxide delamination and thus steel degradation.