ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Gennadij T. Razdobarin, Gianfranco Federici, Vladimir M. Kozhevin, Eugeny E. Mukhin, Vladimir V. Semenov, Sergey Yu. Tolstyakov
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 32-43
Technical Paper | doi.org/10.13182/FST02-A198
Articles are hosted by Taylor and Francis Online.
A technique based on laser-induced breakdown spectroscopy is proposed for detecting in situ dust on the plasma-exposed surfaces and in the grooves of plasma-facing components in the next generation of fusion devices (e.g., ITER). It is based on laser-induced ablation of wall material and spectral analysis of the laser spark flash-light collected by imaging optics and transmitted to the detection system. This could give space- and time-resolved information on the presence of dust or loosely bound films, their characteristic deposition patterns, elemental composition, and possibly their hydrogen content, without the necessity of breaking the machine vacuum. We have performed some simple proof-of-principle experiments to demonstrate the suitability of this technique, which might provide an effective nonintrusive in situ surface analysis method for surveying in-vessel dust accumulation in future fusion devices. The preliminary results are discussed, and some of the inherent advantages and difficulties of this method are highlighted. The usefulness of this technique to provide reliable information on the quantity of dust at the probed location still depends on the resolution of several aspects, which are the subject of ongoing experimental investigation. Areas of further research and development are identified, and some of the design issues to integrate this system in a next-step fusion device such as ITER are briefly discussed.